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'NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

TECHNICAL NOTE NO. 1170 

ON SUBSONIC COMPRESSIBLE FLOWS BY A METHOD OF CORRESPONDENCE 

I - METHODS FOR' OBTAINING SUBSONIC CIRCULATORY COMPRESSIBLE FLOWS 

ABOUT TWO-DIMENSIONAL BODIES 

By Abe Gelbart 

SUMMARY 

By means of the general solutions of the ho&ograph equations for 
compressible fluids, certain solutions corresponding to solutions of the 
hodograph equations of an Incompressible fluid are used to find flow 
patterns of compressible fluids. When the adiabatic equation of state 
is used, only a general method is outlined. 

The method appears to lead to the solution of the problem of sub- 
sonic flows with circulation around arbitrary bodies, as the method of 
Theodorsen does for incompressible fluid's. A second paper, part II, 
illustrates the method for some given bodies. For the linearized equa— 
tion^of state, the results obtained Include some of the results of Von 
Karman and Tsien, as well as some of the recent results of Bers. The 
method can be used for flows with circulation as. well as without circu- 
lation. '  --   • 

INTRODUCTION   

It is well Imom that the nonlinear compressible—flow equations in 
the physical plane can be reduced to linear equations which have the 
form of generalized Cauchy—RIemann equations by the change of the Inde- 
pendent variables in the physical plane to the independent variables of 
the hodograph plane. The successful technique applied to the solution 
of the incompressible—flow problems arpund given bodies was achieved 
only because the theory of analytic functions had been developed pre- 
viously. It would, therefore, be suspected that similar results for the 
theory of compressible fluids could be obtained if there were developed 
a theory corresponding to the theory of analytic functions for the gen- 
eralized Cauchy—Riemann equations representing the flow of a compressible 
fluid in the hodograph plane. 
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Development of such a theory has "been partly achieved by the theory 
of £-*nonogenlc functions (references 1 and 2). This theory has not 
yet attained the perfection that the theory of analytic functions has. 
However> the E-*nonogenio Taylor series and the £-monogenic, Laplace 
transforms may be partly able to overcome the weaknesses of this method. 
Some efforts in this direction are being made in this paper.  . . 

Even with the complete theory of E-monogenic functions one of the 
chief drawbacks of the approach lies in the difficulty of transforming 
the solutions from the hodograph plane to the physical plane. 

The method of the theory of correspondence has been very briefly 
outlined in reference 3« The procedure is to obtain the flow of an in- 
compressible fluid around some given closed body, to transform the com- 
plex potential of the flow to the hodograph, and then to obtain the 
particular SHnonogenic function of the infinite set of solutions which 
possesses the desired properties. 

It may seem, at first, that this technique is too general to be of 
practical use, but there already exist some interesting reeults of the 
application of this method. Furthermore, this technique is certain^ 
not new. It has been used with much success by Chaplygin, Ton Karman, 
Tsien, Bergman, Bers, and others.  (See references h to 12.) However, 
much is believed to be new in the specific use of this method when 
employing E-monogenic functions. When the method is applied directly 
to that of a source and a sink of an incompressible fluid, the method 
yields.a source and a sink of a compressible fluid. 

It is the aim of this paper to elaborate on the correspondence 
method in a general way and to apply it in particular to the flow of a 
compressible fluid under the linearized equation of state. It should 
be mentioned that this method has already been applied, under the as- 
sumption of the linearized equation of state, by others, notably by 
Chaplygin, von Barman, Tsien, and Bers. 

By dealing with the method in all its generality, a formula is ob- 
tained involving an arbitrary analytic function. By choosing particular 
values of this arbitrary function, of which the derivative is regular in 
the exterior of a region including the origin, the particular formulas 
of Tsien (reference 6) and Bers (reference 8) are obtained. Once the 
arbitrary analytic function is determined for a given flow, velooities, 
stagnation" points, and so forth, can be readily computed. In a Becond 
paper by Bartnoff and Gelbart (reference 13), some flows around given 
bodies are calculated. 

This investigation was carried out at Syracuse University under 
the sponsorship and with the financial assistance of the National 
Advisory Committee for Aeronautics. This report was submitted in July 
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19^5. The author wishes to express his thanks to Mr. Bartnoff for the 
valuable assistance rendered in the preparation of this report and to 
Syracuse University for technical assistance and cooperation. 

SYMBOLS 

k,a,ß constants 

p pressure 

p density 

q. velocity 

Pi>Q.i particular values of the quantities 

o subscript referring to the state of the fluid at rest 

u horizontal velocity 

v vertical velocity 

0 angle that velocity vector makes with horizontal 

q velocity of undisturbed stream 
GO 

q distorted velocity 

a velocity of sound 

w complex variable in distorted hodograph plane 

a complex variable in hodograph plane 

z complex variable in physical plane 

M Mach number (q/a) 

qp, $ potential functions 

\f/, \J/ stream functions 

Q complex potential (<p + I\|/) 

£ complex variable in auxiliary plane 

7 ratio of specific heats 
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constant depending on velocity of undisturbed stream 

K = r±-t>Z /l +J1 + a_am\ 

^    <k>    ' .   .. 

Cr(£)   complex potential of an incompressible fluid in auxiliary plane 

T     circulation of an incompressible fluid 

T     an analytic function of the velocity q. 

(n) ~(n) 
W  , 1W   generalized complex powers 

0.      ,Q*    generalized real powers 

generalized differentiation 

generalized multiplication 

Cn    'binomial coefficients 

E generalized complex exponential function 

c,c* generalized real cosine function 

s,s* generalized real sine function 

L-„ generalized Laplace transform 

(  )  complex conjugate of (  ) 

absolute value symbol 

COMPRESSIBLE FLOWS UNDEB THE ASSUMPTION OF 

THE ADIABAT1C EQUATION OF STATE 

The four basic relations for the potential flow of a steady two- 
dimensional fluid that will be assumed are: 

Equation of state, p = kp^ (l) 

where 
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p   pressure 

p   density 

7   ratio of the specific heats 

k   constant 

£6x11011111*8 equation, 

,2 q*     r äp . v — + /    — = constant (2) 
2     J      P 

The continuity equation, 

div(£-q) = 0 (3) 

and the circulation equation (for irrotational fluids), 

curl (q) = 0 - (k) 

The velocity of sound is given "by -     • •   J. - 

a2 = -£ <» 
From equation (5) the Bernoulli equation can be written in the form 

q2   r 2 dp 
— + / a — as constant (6) 

which often Is more convenient. From these assumptions on the fluid, 
the first two equations give rise to the relations for density, pressure, 
the velocity of sound, and so forth, in terms of the velocity only. The 
third and fourth equations give rise to the equations of motion of the 
flow. 

The subscript zero on the variables' p, p, and a will indicate 
the particular value of the variable at a stagnation point. It will be 
assumed throughout that 



NACA TH Ho. 1170 

Po a ao » 1 (7) 

This is equivalent to introducing the dimensionless variables p/p0 
and q/a0. 

From equations (l) and (2), with the aid of equation (5), the fol- 
lowing well-known relations are established: 

as « a a _ [(7-l)/2]q2 (8) 

P » P, C i- 7.-.1 -3l\r 
2      &0

ZJ 

JL- 

->.o 1 + y-U' 
2     a£ 

A    7-1 (9) 

P - P~ (1 .0 
y - 1    q* \ 7-1 

): 

p    fl + Z-ZLi ä!^     7=* 
°V 2      a2/ 

(10) 

M* 
q dp 
P dq 

•/(• 7-1 
<V -) (11) 

These quantities are all given in terms of the single variable q. 

From the basic relations (3) and (4),and the fact that the flow is 
potential, there exist two functions <p, the potential function, and \|/, 
the stream function, that satisfy the equations 

q>. y " :** 

(12) 
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where the subscripts indicate partial.differentiation with respect to the 
variables indicated. The independent variables x and y are the coor- 
dinates in the physical plane of the position of the particle of the 
fluid. System (12) represents the flow of a compressible fluid. 

Let u and v be the horizontal and the vertical velocities, re- 
spectively, of a particle of the fluid at a point (x,y)• Then 

(13) 

where q. is the magnitude of the velocity q., and Ö the angle that q. 
makes with the x-axis. 

From the physical definitions of the potential function 9 and the 
stream function \J/, it follows that 

dcp = u dx + v dy (1*0 

d\J/= — pv dx + pu dy (15) 

Since dcp » cpx dx + cp„ dy and d\j/ = \|/x dx + \j/„ dy, system (12) can be 

obtained directly by comparing these equations with equations (ik)  and 
(15). 

From equations (14) and (15) it follows that 

dcp+ i — d\l/=udx+ vdy + i(—v dx + u dy) 
P 

= (u — iv) (dx + i dy) 

= qe~ie dz 

where z = x + iy. Thus it follows that 

dz • S— ( dtp + *• d\|M (16) 

In the hodograph, the coordinates are the polar: coordinates  (q.,0). 
•Iquafion (16) is in the nature of a transformation from the hodograph 
coordinates of the flow to the physical coordinates (x,y). It is this 
fact that makes equation (16) of fundamental importance for the approach 
used in this paper. 
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Upon eliminating first one and then the other of the two unknown 
functions, <p and \\i, from equations (12), the second-order partial 
differential equations 

(«Ox + W T " ° 
(s*«)x-(5*0/-c 

are obtained 

From equation (lJ+) it is deduced that 

(17) 

(18) 

/q>x2 + cp/ (19) 

so that p is a function of the unknown cp. Equations (17) and (18) 
are therefore nonlinear. It is precisely this condition that has led 
previous investigators to transform the flow equations from the independ- 
ent variables (x,y) in the physical plane to the independent variables 
(q,0) in the more geometrically complicated hodograph plane. As will be 
shown, these geometric complications can be circumvented after the lin- 
earized equations in the hodograph variables are used to advantage. 

The flow equations in the hodograph variables have been derived 
from equations (12) by many previous writers. For the sake of complete- 
ness, however, an outline of a derivation will be presented here.  (See 
reference 10.) 

Equation (16) is first differentiated with respect to 0: 

dz  1 10 /dep , 
00  q    VÖ0 pbe) 

(20) 

and then with respect to    q: 

= iei0 dz —— = — ©       I—- +  i ~ 

dq      q \3q p äq' 

Equation (20) is differentiated with respect to q: 

+ ii^ 

b2z 
oqd0 

i© H dqp _d_ / 1_ ö}K 
00 dq \pq beJ 

i   ie. + — e 
q. ( dq de 

+ i 
1 d2* 
p öq be ) 

(21) 

(22) 
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and equation (21) is differentiated with respect to 0: 

= L 9**(& +1iL^+i e1^-^- + i i JfÜL>V (23) 
q \ dg p öq /       g \ öS dg p öö dg / de dg 

Since the left-*iand sides of eguations (22) and (23) are egual, it fol- 
lows that 

1 eifl^ +ii^ „ eie r  _i as + ± Af-iAMl 
g        Vdg p dg/ [    g8 öe'        dgVpg/dej (2*0 

The flow eguations in the hodograph variables are obtained by eguating 
the real and the imaginary parts of eguation (24): 

do  p dg 

^ 

> 

From eguation (11) 

It follows that 

2S> s g JLYJL\ £^ 
dg ~  dg \ pg/ öS 

§£ „ - £ M2 
dq.   q. 

dg \pq/ 
1 dp 1_ 

p2g dg  pg2 

pg2 
(M2 - 1) 

pqr    pq. 

Eguations (25) can now be written in a more suitable form: 

do  p dg 

"\ 

<*£ « _ 1 ~ MS M 
dg     pg be 

(25) 

(26) 
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The fact that M and p • are functions of q only makes equations 
(26) linear. These equations can "be handled mathematically with much 
greater ease.than can the nonlinear equations (12) in the physical plane. 
The theory of E-monogenic functions has been, set up for just this pur- 
pose. Though'the solutions of equations (26) that are obtained give the 
complex potential of the flow in terms of the velocity of a particle of 
the fluid rather than in terms of- the position of-the particle, the fun- 
damental transformation, equation (16), enables these solutions to he 
transformed hack to the physical plane. The fact that the right—hand 
side of equation (l6) is an exact differential facilitates greatly the 
process of carrying out this transformation. 

SOLUTIONS OF THE COMPRESSIBLE FLOW EQUATIONS AS FUNCTIONS 

OF THE HODOGEAPH VARIABLES 

Equations (26) can he written in a more general form for the purpose 
of mathematical treatment: 

(27) 

where TX and  T are positive analytic functions of q. The condition 
that Ta he positive is equivalent to assuming that the flow romaicid sub- 
sonic. Many of the mathematical results that will be preoented here hold 
also when  Ts becomes negative, so that flows involving supersonic ve- 
locities can be treated. This has been carried out elsewhere for very 
special flews.  (See reference 3.) 

Consider the function represented by the line integral 

F(ff) = *(e,q) + i$ (9,q) 

( <pd0 -Tft (q)\{/ dqj + i /     U do +  i-y 9 dq)     (28) 

o>1o ^o^9.o        x 

where Q0,  q0 are fixed values of 9    and q and a = 6  + iq. By 
virtue of equations (27) a simple computation verifies that each of the 
two integrands in the right-hand side of equation (28) is an exact differ- 
ential . 



NACA TN No. 1170 11 

This establishes that F is a function of the point (ö,q.) and 
has the same value when the integration is taken along any path, provided 
proper regard is given to singularities. 

The second important fact about F(6,q.) is that its real part $ 
and its imaginary part $ again satisfy the system of equations (27)• 
This affords a method of' generating particular solutions of system (27). 

It is trivial that when 9 = 1 and \|/ = 0, this pair is a solu- 
tion of equations (27). When this solution is substituted into equa- 
tion (28) 

$ + ii£*=* W(a)   q. 

= 6  + i / — dq. (29) 

If the real and the imaginary parts of equation (29) are again substi- 
tuted into equation (28), the next solution gives 

W(2) = Ö* + 2i 6  / ^-  dq - 21 / Ta / ~- dq.2 (30) 

' 0 " 0    ' o 

The superscript 2 in parentheses indicates that the function has the 
nature of a power, as is observed when Ti = T 2 * 1« Here equation (30) 
reduces to (9 + iq.)2 = a2. 

The notation F(a0jcr), a0 » 0O + iq^  indicates that &0    and q.0 
are the lower limits of integration in equation (28). For example, 

W(2)(cr0;a) = (9 - eof  + 21 (0 - 

and corresponds to the function (cr — a0) . When aQ = 0, F(cr0;a) is 
usually written F(CT).' 

Let 

(o) Q   5 1 

and 
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n times 

Q(n)k)= / 

nl 

•ja! 

1 j n     JJ — aq. ,    n odd 

n times 
n 

dq n even 

(3D 

If this operation is repeated n times the resulting solution iB 

W(n) = (9 + iQ)(n) 

n 

T u n-u> Tn-v) , . 
^ Cn>v &v  i   Q    (q) 

u = o 

(32) 

where Cn v    is the vth 'binomial coefficient. 

If another trivial solution is taken as a first solution, say, 
9 = 0, \|/ a l, and substituted in equation (28), it follows that 

F(a) * i-W(a) 

= iW(a) 

» 1(S + i       Ta    dq) (33) 

The symbolic notation i.W is used to represent a generalization of the 
concept of-multiplication. It will be seen that this notation is rather 
useful. When this process of substitution is repeated 

i,W(a) " 1W(a) 

(ez  + 2i 6   / T2 dq - 2» / .jL I   T2 dq
2") (3fc) 

Let 

(o) 
Q*   s 1 

and 



NACA TN No. 1170 13 

n times 

(n)   }      -J        J 
£-  . . . / T2 dq.

n,   n odd 

Q*(n)=<   -   v        - (35) 

n! / j1- j   T a • • • / T2 dq.
n    n aven 

Again, if this operation is repeated n times the resulting solution is 

i.W<a) = iW<n) 

-l ^^fl'i^V^d) (36) 
u=o 

Finally, if the trivial solution cp = a, \)/ = ß is taken, a and ß 
being constants, n—repetitions of the operation (28) yield the solution 

a-W(n) =d^(n)(a) +ß [i.W
(n) 

(37) 

where a = a + iß. 

Complex—valued functions of which the real and imaginary parts sat- 
isfy the system (26) are said to "be 2-monogenic functions. Thus, 

W^ and i«W^  = iW^n' are 2-monogenic functions. These are more 
specifically referred to as formal powers, since when Tx = T2 = 1, they 

reduce to o11 » (0 + iq.)n and ia11 = i(0 + iqjn. The formal product of 

the two solutions a and w(n' is a«w(n', which itself is a solution. 

It should be noted that the ordinary product aW^n' is not a solution 
of the system (26) when a is complex. 

As S-multiplication of a constant and a formal power was intro- 
duced, so may E—integration be introduced. The E-integration of the 
E-monogenic function? f(a) = <p + i\|/, is defined as 

F(c) =0 + 1$ 
_0q. 0q. 

(q> do -Ta\|/ dgj + i /    A|/d0 + ^- 9 &<L) 

f(c)d> c (38) 
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The \ refers to the coefficient matrix of system (27). 

V1 

)s 

1  T. 

1  T 
(39) 

And    2-differentiation of the    2-monogenic function,    f (0) « 9 + i}|/, 
is defined as 

t(xs) " -**  

• cpx +  i\f/x 

From the relations of equations  (27) 

C'lO) 

dr f 
dTff * <Px + ^ 

=  TX^y ~^-     <fy (hi) 

Again, when Tj. » T2 = 1, Tr~integration and 2-differentiation 
reduce to ordinary complex integration and differentiation. 

A more elaborate definition of ^--integration and differentiation 
has been given in reference 2. It has been shown in reference 2 that 

and 

dEF(o) -A = f (c) 
d2a 

F% (o*)d_ a  * F(a) 

(te) 

(*3) 

Thus, £—integration and S-differentiation are inverse processes. Also, 
the 2—derivative of a E-monogenic function is a E-monogenic function. 

From the preceding definitions it can be verified by direct compu- 
tation that the E—integration and the E -differentiation of the formal 
powers follow similar rules to those of ordinary integration and differ— 
entation of the powers of a complex variable; more precisely, 

e.'\l      d q. 
n + 1 

W 
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and 
&• 

V- 
a-W (a) = na«W 

(n-i) 
(U5) 

Since system (27) is linear, the sum of two solutions is a solution. 
Hence, a formal polynomial of the nth degree, 

f(c) = aQ + ai«W + . . , + an.¥^
n , an 4  ° (h6) 

is a   E-monogenic function.    The formal power series 
00 

f (a) = 
n=o 
I ^ ) (V7) 

represents a E-monogenic function, provided the series converges uni- 
formly and absolutely in some neighborhood of Co- 

It has been shown (reference 2) that every complex solution of 
system (27) can he represented uniquely by a formal power series of the 
form of equation (kj).  (This statement is true only when Tj_ T2 > 0, 
that is, in the elliptic case or subsonic flow.) The coefficients are 
given by the formula 

n 

ni dzcr 
n (k8) 

C   = Or 

Since every solution of system (27) can be represented, at least 
in some neighborhood, as a formal power series and since every complex 
potential in the hodograph variables of a compressible .fluid is a solu- 
tion of system (27), it would appear that it remains only to choose that 
particular solution which is the desired flow around a given body with 
prescribed conditions. This approach, however, still has some very 
serious difficulties. 

The formal powers presented previously are solutions of system (27) 
in closed form and are valid throughout their regions of regularity. 
The first powers W(a) and i«W(a) are hnown to represent a compress- 
ible vortex, respectively. The higher powers appear not to represent 
any flows of interest. Linear combinations of the powers, that is, 
formal polynomials, have not yet been studied sufficiently to determine 
whether they represent flows of interest. The solutions represented by 
formal power series are first, not in closed form and, second, not valid 



16 NACA TN No, 1170 

throughout their regions of regularity. Furthermore, since in aerodynam- 
ics the majority of solutions of interest are those that are regular 
throughout the exterior of a closed region, solutions corresponding to 
the analytic functions o-11 must he obtained in either closed form or 
in a series that can he extended throughout its region of regularity. 
What is most desired is a theorem analogous to that of Laurent in anar- 
lytic functions, for £-monogenic functions. Such a theorem, if it can 
he found, might quickly lead to the solutions of the major problems in 
compressibility. 

It is hardly hoped that the complicated problem of compressibility 
can be solved in any simple way. Any results in this direction, there- 
fore, are of interest. 

Some progress along these lines has been made by Bers and Gelbart" 
(reference 2) by extending to E-aonogenic functions some of the results 
on the Laplace transform. These give, in closed form, solutions of 
system (27) that are different from the formal powers a»w(n), and in 
half planes correspond to the analytic functions o"*1. 

Consider the function 
00 

a-E(Va,a) = £ ^r W(n)(a0;a)  _        (U<?) 

n=o 

where as before a « a + iß (see references 1 and 2) and a is real. 
For the sake of brevity 

(50) 
l.B(ff0;a,or) • E(a0;a,a)' 

E(0;a,a) = E(a,c) 

This function is termed the "S-exponential function" for obvious 
reasons. 

A simple computation shows that 

E(a,a) = e^lXa,^) + is(a,q)] (51) 

and 

where 

i.E(a,ff> = ie"9 [c*(a,q) + ie*(a,0] (5^) 
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^-t^fefr^M    ) (2n)S 
n=o 

c*(a,q.) = 
A   (2n)I *    ta; 
n=o 

(53a) 

,(a,q.) - ; •*—>-  Q     (4) 

"— (2n + 1)'. n=o (53b) 

n=o 

sn sn+i 
) a 

(£n + i)« 
:(a,q) - y ^"V^'h) 

From the definition of E(a,cr) and that of E-differentiation, it 
is clear that 

-^2L[E(a,tO] -aE(a,ff) (5*0 
dsa 

Further properties of functions c, s, c*, and- s* are 

s(a,0) = s~(a,0) = 0 

c(a,0) = c*(a,0) = 1 

and 
"\ 

s'(a,q.) 

s*'(a,q.) 

c'(a,q.) 

c*»(a,q) 

a T2(q)o«(a,y) 

-a- T2(q.)s(a,qL) 

= —a 
s*(a,q.) 
TiU) 

(55) 

(56) 
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the differentiation being with respect to q. These functions may be 
regarded as generalizations of the trigonometric functions and have many 
properties analogous to those of the trigonometric functions. For 
example, they?5atisfy Sturra-Liouville differential equations and possess 
such properties as 

c(a,q)c*(a,q) + e(a,q)s*(a,q) 2 1 (57) 

How consider the function 

f(o) = Ls[F(a)] 
.CD 

F(a) • E(-a,a)da (58) 

'0 

where F(a) = Fx(a) + iF2(a) is a complex-valued function of the real 
variable a, Fi(a) and F2(a) being real functions. This is called 
the E—Laplace transform of F(a), for when Tx = T2 = 1 the integral 
in equation (58) reduces to the ordinary Laplace transform of the func- 
tion F (a). 

Equation (58) may be rewritten in the more convenient form 

f (a) = cp(0,q) + li|, (0,q) 

Fi(a)E(-a,cr)da + / F2(a) [i.E(-aja)] da 

"O   00 0      _co 

»   /   e        cfa^qjFxCaJda — i /    e"       s(a,q)Fi(a)da 

0   nm ' ° n* 
+ i   /  o"00 c*(a,q)F£(a)da +   /   e-00 s*(a,q)Fa(a)da (59) 

* 0 o 
Then 

00 00 

0 (a,q) =  /   e""6 c(a,q)Fx(a)da +  /   e"00 s*(a,q)F2(a)da.      (60) 

. o 0 
00 00 

^ (9,4) • ~ / e"010 s(a,q)Fx(a)da + / e"^ c* (a,q)F2(a)da  (6l) 

Two facts may be demonstrated about the function in equation (58): 
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1. If ß is the abscissa of convergence of the Laplace integral 

^  e"00 F(a)da (62) 

then the generalized Laplace integral 

F(a) • l(-a,a)da (63) 

converges uniformly in the semi—infinite strip 

e> e0>ß 

2. Integral (63) represents a E-monogenic function in the open 
half plane of convergence of integral (62). 

Because of theorem 2, expression (63) represents a new class .of 
solutions of system (27) in closed form. Hence, for every function 
F(a) for which integral (63) converges (from theorem 1 this class is 
known to he wide), expression (63) is the complex potential of a com- 
pressible flow in the hodograph coordinates. 

For certain functions F(a)  it is easy to show that the formal 
series expansion of function 

00 

f(a) - / F(a)'E(-a,a)da 
0 

converges in a smaller region than does function f(a). The E—Laplace 
representation of a function may thus "be regarded as a means of contin- 
uing analytically, a function that is given in the form of a formal power 
series. 

Because 
00 

-i = / e"00 da (6k) 
•'o 

in the right half plane, it seems natural to define the negative S — 
power function by „, 

W^ - / E(-a,ff)da (65) 

o 
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Since E-differentiation, under the integral sign is permitted, rep- 
resentations for the higher negative S-powers can he obtained. By £— 
differentiating each side of equation (65) n times and using equation 
(5*0, it follows that 

V(-a,o)cP da (66) 

L, o 

In view of equation (66)  it seems convenient to define the negative 
Z—powered functions "by 

CO 

WC~n) - / E(-a,a) SLlLda (67) 
,J0 (n -1)1 

Generalizations of other special functions of a complex, variable may "be 
obtained in a similar way. 

In order that functions w(~n), as defined by equation (67), play 
a similar role to that of the inverse powere it would be necessary to 
show that they possess a pole of the nth order at the origin and be . 
regular everywhere else. This has not yet been shown. In fact, wi n' 
is defined only for the right half plane, EICT > 0. It can be defined 
in the left half plane, Rlcr < 0, by 

(68) 

On the imaginary axis other than at the origin it can be defined as the 
limit of the function as a    approaches a point on the imaginary axis. 
It has not yet been proved that W^  , defined in the right and the 
left half plane by equations (67) and (68), respectively, is continuous 
across the imaginary axis. If its truth is assumed, some progress might 
be made in the study of compressible flows. 

In order to study the flows that arise from these solutions, it is 
necessary to transform them from the hodograph back to the physical 
plane. 

Consider the solution 

q> + i\J/ - wW 

ir C   9^* Q<r) (69) n,r v " 
n=o 
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The real part is 

t 
<P 

11-ar (2r) Tu, ,r      11-ar 
(-1) cn,2re   Q (TO) 

r=o 

and the Imaginary part is 

2T+1 

n—2r—1 (ar+x) 
9     Q (71) 

r=o 

where the "brackets in the upper limit of the summation indicate that the 
integer chosen is the smaller one nearer to the number within the 
"brackets. 

After substituting (70) and (71) into equation 

10 
dz = -— (dtp + - d\|/) 

q. P 

.ie 
«P9 M + «Pa. aa + - (\|/0 de + ^ dq) 1 (72) 

and integrating,  it follows that 

BWH(-X)W1' 

z = e 

r=o 

|-an^+(-x)^-[      s4 " *-2r-l-s J 

•i      J [(-!)%- 2r - 1)0^ *<"«>  . 
r=o 

n-sr—2 
y/    «    ^ \ r  „n—ar—s—2 -i -, 

<_; (n-2r-s -2)!_J UJ; 

s=o 
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Equation (73) together with equation (69)  can be regarded as the 
parametric equations of the compressible flow of cp + i\|/ in the physi- 
cal plane. 

Similarly, for the solution 

q> + i\|/ - iW^ 

(7*0 
r=o 

ie <i 

v. 

. .n+i -. 
en-g+(-x) 

Y [(-D'dirfir^^vW . 
r=o 

n—2r—1 

,_4.r-1
,)n+i gn-s+(-1) 

y 
s=o 

-1 (n - 2r - 1)'. 0' 
n—2r—e—1 

(n - 2r - s - 1) *. 

P<1 
y 
r*o 

'(-l)r(n - 2r-"l)Q*(2r+l) 

n—er— 2 
V  ±B (n - 2r - 2)1. 6' 

n—2T—S—2 ^ 

s=o (n - 2r - s - 2) 
<*" (75) 

By taking linear combinations of the formal power solutions, other 
flows can he obtained in the physical plane in parametric form. 

If the generalized Laplace integral solutions are taken, then 
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and 

cp + i\|/ = / F(a) .l(-a,a)dtf 

c(a,a)Fx(a) + c* (a, q.)F2 (a) da 

c*(a,<i)F2(a)da - e
-^ s(a,q.)F;i.(ä) -aß da 

z = 
,  P00 (i-a)e r 

as (i-a)0 

q.fi /   i - a 
o 

c*(a,q.)F2(a) -flfoq.jFita) 

da 

da (76) 

Further Investigation is required to determine precisely under what 
conditions the flow is 1 around a closed "body and uniform at infinity. 
These investigations seem within reach "by the method here indicated. 
This could yield mixed subsonic—supersonic flows with subsonic free- 
stream velocities under the assumption of the adiabatic equation of state. 

As an application of the method outlined in this paper, fluids of 
which the flows are everywhere subsonic (more precisely, flows satisfy- 
ing the linearized equation of state) are chosen. Precise conditions 
are obtained for flows around closed bodies with prescribed velocities 
at infinity. Flows under these hypotheses have been investigated with 
much success by Chaplygin, von Earman, Tsien, Bers, and others. Of par- 
ticular interest in this connection for flows around closed bodies is 
the work of Bers (reference 8). _            _. 

In the sequel to the present report (reference 13) a detailed inves- 
tigation of the flow around a circle is made (under the assumption of the 
linearized equation of state). This is done primarily because the flow 
around a circle appears to be basic for the study of flows around given 
bodies, as in the case of incompressible fluids. 

COMPRESSIBLE FLUIDS UNDER THE ASSUMPTION OF THE LINEARIZED EQUATION OF STATE 

Of the four basic relations of the flow, equations (l) to (k),  the 
first, the equation of state, is replaced by 

»-»i-kG-£) (77) 
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where pj. As the density for a given velocity q.3., and pi is the cor- 
responding pressure. 

If pressure-volume curves are drawn of equations (l) and (77) > it 
is observed that when k is suitably chosen equation (77) represents a 
line tangent to tl;e curve represented by equation (l) at the point pj., 
l/px« Von Barman and-Tsien used this fact partly to Justify the use of 
the linearized equation of state for the study of subsonic flows. 

From equations (5) an*? (77) 

& 
dp 

Hence 

e „ - at Q<-   a _k_ 
«2 (78) 

From equation (6) 

<£ 

a3 p2 

»2 «2 a P dp «* constant 

(79) 

and from equation (79) 

Thus, 

4" 

%g + a2 p2 I S£ = constant 
P3 

„2   «2 
q - a «a constant 

3 .that 

q2/ae - 1 

1/a2 

M - 1 

-P
2
A 

constant 

(80) 

or 

1 -Mc 

= constant (81) 
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By the normalization, a0 « p0 *= 1, the constants in the right- 

hand sides of equations (80) and (8l) are readily determined to be minus 
unity and unity, respectively. Thus, 

a2 = 1 + q2 •'"- (82) 

and 

p2 = 1 - Ms 

.1—*' 
1 + 1

2 

1+<12 
(83) 

From equation (77) 

p — px a k 0i + 
«= - ±-\ (84) 
a2 PI^ 

Again, from the definitions of stream function cp and potential 
function \}/ of an incompressible fluid 

dcp = u dx + v dy 

di\f - -v dx + u dy 

also 

d9 = <px dx + q>y dy 

4|/ - \|/x dx + \|/y dy 

Comparing systems (85) and (86), it follows that 

(85) 

(86) 

(87) 

These are the Cauchy—Eiemann equations. This- establishes the well—known 
fact that the complex potential ft * q> + i\|/ of an incompressible flow is 
an analytic function of the complex variable z  = x + iy, the complex 
coordinates in the physical plane. 
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When the second of equations (85) is multiplied by i and the two 
equations added 

dQ - (u - iv) (dx + i dy) 

= qe~id  dz (88) 

or 

dz = i eie dQ (89) 

By proceeding as was done in the derivation of equations (2^), the 
change of the variables (x,y) to the independent variables (6,1)  in 
equations (87) leads to equations 

\|/0 " 1 \|>q 

<P4 " - -*e 

(90) 

The transformation that will symmetrize system 

% - Ti   (O.) *q_ 

q>q = T 2  (q) \|/g 
(91) 

is given by 

System (90) Is therefore symmetrized by the transformation 

q = r^=logf (93) 

1- 
and reduces to the Cauchy-Riemann equations 

<P0 -Mr- 

<Pq  =  -*0 
W 
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Thus, the complex potential of an, (incompressible flow, given in terms of 
the independent variables of the 9, £-plane is an analytic function of 
the complex variable w = 0.+ iq.. 

Equations 

<Pe " p ^g. 

1 -M2 > 
(95) 

can similarly be symmetrized by the transformation 

q.=/ v 4a 
J        q. 

{96) 

Equations  (95) then become 

Jl - M2 
cp0 »v ^ 

<P, 
^_     y/l  - M£ 

>te 

(97) 

However, under the assumption of the linearized equation of state 

Vl-M2 
= 1 

so that equations (97) become the Cauchy—Riemann equations 

<P£ = - % 
(98) 
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Again, the complex potential of a compressible flow under the assumption 
of the linearized equation of state is an analytic function of the com- 
plex variable w = 9 +  iq\ The w—plane shall Toe referred to as the 
distorted hodograph plane. 

Any analytic function of w may be regarded as the complex poten- 
tial of either an incompressible flow in the physical plane or in the 
hodograph plane, or a compressible flow in the distorted hodograph under 
the assumption of this section, and vice versa; then, in general, to 
every incompressible flow around a given body with a given free-stream 
velocity there corresponds a compressible flow (everywhere subsonic) 
around the same body with the same free-stream velocity. 

This correspondence can be expressed aß follows: Given the complex 
potential fi (w) of an incompressible flow, or of a compressible flow 
in the distorted hodograph, then there exists an analytic function 
w = e(£) such that  f2|g(£J3  is the complex potential in the distorted 
hodograph £-plane of a given compressible flow. 

Since        ,  2. 
J1 — Vr  « p,  and p = —   — 

(99) 

and 

I » log  ^ (100) 

•/ i+vi + <r 

where 

1 + Jl + q2 

K = ^—S --2- (101) 

Hence 

e<1~ S  (102) 
1 +,/l + q^ 
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and 

Also 

1 = 

q. 

K 
ie^~ 

si 
2K 

.1. - JX + q2 

pq. a 

2eq-       2 

(103) 

(1010 

Thus, equation (l6) may "be put into the more convenient form, 

»10 
dz = e- 

(i + ±.\ an + fl- (i - i.) dö      (105) 
2 vq,  pq/      2 Nq.  pq. 

From equations (103) and (lOl(-)j equation (105) becomes 

J-e       v J-9 JL    - dz=£—• Eän_e__e^dn 
q   eff     2  K 

K    iw  „       1     iw    - •   /nrv>\ 
== - e      dQ - —: e      dQ (106) 

2 2K 

where    w = Q + iq.    Thus, 

where £}(w), the complex potential of a compressible fluid in the dis- 
torted hodograph plane, is an analytic function of w. 

Since the complex potential of a compressible fluid remains the 
complex potential of a compressible fluid under an analytic transforma- 
tion, set 

w(0=-iioS§^} (108) 
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or 

and 

eiw = g^l (109) 

e-iv , mUil (no) 

where f(£) and G(£) «= fi[w(£)] are analytic, f(£) "being arbitrary 
and G( £) the coupler potential of an incompressible flow around a 
given body in the physical £ -plane. 

When w la considered a function of £ , equation (lOf) may be 
written as 

When equation (10Ö) is substituted into equation (ill), equation (ill) 
becomes 

*mf{i)-lf **$&-** (112) 

It should be emphasized that f(£) is an arbitrary analytic function of 
£, while G(£) Is an incompressible flow in the f-plane, f being 
the physical coordinates' of the flow, and G(£) = f2[w(£)] is the corre- 
sponding compressible flow in the w-plane. The relation, 

Im 0(5) - Dn ngr(03 

= constant 

represents streamlines of the Incompressible flow as well -as streamlines 
of the compressible flow. If £  moves along a streamline of the incom- 
pressible flow, then w, • given by equation (108), traverses a stream- 
line of the compressible flow in the hodograph plane and z, by the 
transformation (108), traces out a streamline in the physical plane of 
the compressible flow. 

It is convenient to consider G(£) the incompressible flow around 
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a circle of radius R, with circulation r, and having a free-stream 
velocity q^ namely 

Since eiw = e±{&+i.q.)}     it folloWB from equation (110) that 

(113) 

e   e* * 
2 f*(&) 

Thus, 

&'(£) 
f'(£) 

and recalling the relation (102), 

(UA) 

q. = 
2K e' 

K2 - e2^ 

G» 
f» 

1 - 
1 G« 

f« 

£2 
(115) 

If, then, f(0 is so determined that a prescribed flow around a 
given body is obtained, it follows that for a given value £ equation 
(112) determines a point of the flow and equation (115) determines the 
velocity at that point. 

At a stagnation point q, = 0. From equation ^115),  q. = 0 when 
G-'(t) = 0« Thus, stagnation points of the flow occur wherever stagna- 
tion points occur in the incompressible flow G(\)    in the £—plane. 

If as t, —> °°, and GT(£)  is bounded away from zero at 
infinity, then, from equation (115), -f'(£) must be regular and unequal 
to zero at infinity, if the flow is to have a velocity q^ ^ 0 at in- 
finity. Thus, the most general form that f(£) can have is 

00        . 

f (£) = b_.! + bOL£ + bx log t,  + V *n -r=> ^o/0 

n=2 

(116) 
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and 

f»(t) - *o + *i - - >  (a - l)ba - n (117) 

where the values of b may be complex constants. 

It is known from incompressible-flow theory that uniform flows past 
closed bodies must also have this form. Therefore, the second term in 
the right-hand side of equation (112) takes the form 

S£T - - i ruWSL * : J   f'U) 
» C_a + C0I  + Ox log I +  V  Cn —— (118) 

n=e       * 

If the flow at infinity is to be horizontal and of magnitude q^,, 
then from equation (11*0 and the fact that qffli= 0 

, um   5£Lia.! (119) 

When G(z) is given by equation (113), 

lim 
" Z  >. o> ö«(£)l 

where  > J s»oofl (t) " *>o is tne condition that the flow at infinity be 
horizontal and q = q . 

In order to examine the shape of the body in the stream of the flow, 
the circle t  =» Re ^ is mapped through oguation (112) into the z-plane. 
In order for the circle to map into a closed body, it follows from equa- 
tions (116) and (118) that 
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I»! icp - ci icp = 0 

or 

•bj. - ox = 0 (121) 

It is of interest to note that, when f(£) = £, the formula of 
Teien (reference 6) is obtained; namely 

(122) 

The coefficient in the integral term is different only "because of a dif- 
ferent normalization. 

Again, when 
Or -1 l_l/n 

f(0  - / [&'U)J      d£ 

Bers' formula is obtained] namely 

z  = G'(0 
x-1/n«- i •G'(S) 

1+1/n 
it (123) 

Here, too, the formulas differ only by a normalizing factor. 

In Bers1 formula n is arbitrary within limits. This freedom 
enables him to determine the conditions for the flew around a closed 
body. Since f('£) in formula (112) is arbitrary and analytic, there is 
an infinite number of arbitrary coefficients. The first two coefficients 
determine the flew at infinity and that the flow be around a closed body. 
The other arbitrary coefficients can be fixed to determine the flew 
around a given body. 

A similar technique to that developed by Theodorsen and O.rrick 
(references l1«- and 15) for determining the coefficients of f (£) might 
be developed in order to obtain a prescribed body. Bers has employed 
this approach by another method with some success. It should be noted 
that when M = 0 the transformation (112) reduces to the initial trans- 
formation used by Theodorsen (reference 1*0. This implies that if an 
integral equation were set up from equation (112) it would reduce to 
Theodorsen's when M = 0,  so that the integral equation would be a 
generalization of Theodorsen's transformation. 



31*- NACA TN No. 1170 

In another paper Bartnoff determined f(£) euch that the circle 
£ = Ee ^ goes into a unit circle in the z-plane (accuracy to within 
a few percent), thus giving the compressible flow around a circle. This 
has teen done "by others, notably by Bers. 

The right-iiand side of the transformation (112) is invariant under 
an analytic transformation. For, let - 

£   "i(0 (12k) 

be an analytic function of    •£$     then by direct subetitutlon cf equation 
(I2t0  into equation (112), the taronafoMijition becomes 

z = f id) 
J        d/d|fK(l)3 

Because the transformation (112) is invariant under a conformal 
transformation the eubaonic flow of a compressible fluid around a circle 
is of basic importance, 

Syracuse University, 
Syracuse, New York, July 1, 19*<-5. 
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